### Beyond the Final Layer: Reflections on **Deeply-Supervised Nets**



Chen-Yu Lee\*



Saining Xie\*



Patrick Gallagher



Zhengyou Zhang



Zhuowen Tu



\*equal contribution

Test of Time, AISTATS 2025



UC San Diego

# Context & Challenges

Context: rapid development of much **deeper** networks since 2012



#### ILSVRC Error Rate by Competition Year

#### Challenges of training deeper networks back in 2013



## Proposed Solution

#### Question: can we force intermediate layers to learn classifiable features?



#### Question: can we force intermediate layers to learn classifiable features?



#### Our proposal: introduce auxiliary classifiers (deep supervision) at intermediate layers



Our proposal: introduce auxiliary classifiers (deep supervision) at intermediate layers



Goal of the deep supervision

- Directly combat the vanishing gradient problem
- Encourage more discriminative
   features in the intermediate layers

#### A loose assumption



**Theorem 1** Let  $\mathcal{P}(W)$  be  $\lambda_1$ -strongly convex and  $\mathcal{Q}(W)$  be  $\lambda_2$ -strongly convex near optimal  $W^*$ and denote by  $W_T^{(F)}$  and  $W_T^{(\mathcal{P})}$  the solution after T iterations when following SGD on F(W) and  $\mathcal{P}(W)$ , respectively. Then DSN framework improves the relative convergence speed  $\frac{\mathbb{E}[||W_T^{(\mathcal{P})} - W^*||^2]}{\mathbb{E}[||W_T^{(F)} - W^*||^2]}$ , viewed from the ratio of their upper bounds as  $\Theta(\frac{(\lambda_1 + \lambda_2)^2}{\lambda_1^2})$ , when  $\eta_t = 1/\lambda t$ .

#### A loose assumption



Lemma 1  $\forall m, m' = 1...M - 1, and m' > m$  if  $\|\mathbf{w}^{(m)}\|^2 + \ell((\hat{W}^{(1)}, ..., \hat{W}^{(m)}), \mathbf{w}^{(m)}) \leq \gamma$  then there exists  $(\hat{W}^{(1)}, ..., \hat{W}^{(m)}, ..., \hat{W}^{(m')})$  such that  $\|\mathbf{w}^{(m')}\|^2 + \ell((\hat{W}^{(1)}, ..., \hat{W}^{(m)}..., \hat{W}^{(m')}), \mathbf{w}^{(m')}) \leq \gamma$ .

**Lemma 2** Suppose  $\mathbb{E}[\|\hat{\mathbf{gp}}_t\|^2] \leq G^2$  and  $\mathbb{E}[\|\hat{\mathbf{gq}}_t\|^2] \leq G^2$ , and we use the update rule of  $W_{t+1} = \Pi_{\mathcal{W}}(W_t - \eta_t(\hat{\mathbf{gp}}_t + \hat{\mathbf{gq}}_t))$  where  $\mathbb{E}[\hat{\mathbf{gp}}_t] = \mathbf{gp}_t$  and  $\mathbb{E}[\hat{\mathbf{gq}}_t] = \mathbf{gq}_t$ . If we use  $\eta_t = 1/(\lambda_1 + \lambda_2)t$ , then at time stamp T

$$\mathbb{E}[\|\mathsf{W}_T - \mathsf{W}^\star\|^2] \le \frac{12G^2}{(\lambda_1 + \lambda_2)^2 T}$$
(9)

#### Deeply-Supervised Nets (DSN) on MNIST



at 500 samples)

without overfitting

#### Deeply-Supervised Nets (DSN) on MNIST



DSN provides **naturally higher gradient magnitude** without artificially tuning up the learning rate Deeply-Supervised Nets (DSN) generates more **intuitive** intermediate feature maps



#### w/ deep supervision

#### w/o deep supervision



Inspired by: M. Zeiler and R. Fergus. "Visualizing and understanding convolutional networks", ECCV 2014.

#### **MNIST**

| Method                  | Error(%) |
|-------------------------|----------|
| CNN [13]                | 0.53     |
| Stochastic Pooling [32] | 0.47     |
| Network in Network [20] | 0.47     |
| Maxout Networks[9]      | 0.45     |
| DSN (ours)              | 0.39     |

#### CIFAR 10

| Method                  | Error(%) |
|-------------------------|----------|
| No Data Augmentation    |          |
| Stochastic Pooling [32] | 15.13    |
| Maxout Networks [9]     | 11.68    |
| Network in Network [20] | 10.41    |
| DSN (ours)              | 9.78     |
| With Data Augmentation  |          |
| Maxout Networks [9]     | 9.38     |
| DropConnect [19]        | 9.32     |
| Network in Network [20] | 8.81     |
| DSN (ours)              | 8.22     |

#### **CIFAR 100**

| Method                  | Error(%) |
|-------------------------|----------|
| Stochastic Pooling [32] | 42.51    |
| Maxout Networks [9]     | 38.57    |
| Tree based Priors [27]  | 36.85    |
| Network in Network [20] | 35.68    |
| DSN (ours)              | 34.57    |

#### **SVHN**

| Method                  | Error(%) |
|-------------------------|----------|
| Stochastic Pooling [32] | 2.80     |
| Maxout Networks [9]     | 2.47     |
| Network in Network [20] | 2.35     |
| Dropconnect [19]        | 1.94     |
| DSN (ours)              | 1.92     |

#### **Related work**

- M. A. Carreira-Perpinan and W. Wang, "Distributed optimization of deeply nested systems.", AISTATS 2014.
  - Penalty-based methods using alternating optimization
- P. Sermanet and Y. LeCun, "Traffic sign recognition with multi-scale convolutional networks", IJCNN, 2011.
  - The output of the 1st stage, together with the final stage output, is also fed to the classifier
- Z Tu, "Auto-context and its application to high-level vision tasks", CVPR 2008.
  - Trains classifiers by using iteratively refined probability maps from previous steps as context alongside image features
- Y. Bengio et al. "Greedy layer-wise training of deep networks". NIPS, 2007.
  - Solve optimization problems through layer-wise training

[non-exhaustive]

# Reflections & Impact

Reflections: GoogLeNet employed 2 auxiliary classifiers to aid gradient flow



Szegedy et al. Going Deeper with Convolutions. CVPR 2015 [66k citations]

#### Reflections: many more approaches have then been proposed for better training



**DenseNets** [53k citations]







#### Holistically-Nested Edge Detection (HED)



The application of deep supervision to a fully convolutional net (FCN) shows a great performance boost and produces more intuitive **multi-scale** feature maps.



Figure 5. Results on the BSDS500 dataset. Our proposed HED framework achieves the best result (ODS=.782). Compared to several recent CNN-based edge detectors, our approach is also orders of magnitude faster.

#### Impact: human pose estimation

#### **Convolutional Pose Machines (CPMs)**





Intermediate supervision addresses vanishing gradients for **sequential** structured prediction

#### Impact: scene parsing

#### Pyramid Scene Parsing Network (PSPNet)



(a) Image

(b) Ground Truth



Figure 4. Illustration of auxiliary loss in ResNet101. Each blue box denotes a residue block. The auxiliary loss is added after the res4b22 residue block.

#### The auxiliary loss helps optimize the learning process

#### Impact: image inpainting

#### Generative Image Inpainting with Contextual Attention



J Yu et al. Generative Image Inpainting with Contextual Attention. CVPR 2018 [3k citations]

#### Impact: early exit for object detection





- Attach classifier and box regression heads after all intermediate pyramid networks.
- This enables anytime detection which can generate detection results with early exit

#### Impact: object detection with coarse-to-fine deep supervisions

#### YOLOv7



- Even for architectures that converge well, deep supervision can still significantly improve the performance
- Use lead head prediction as guidance to generate coarse-to-fine hierarchical labels, which are used for auxiliary head learning

CY Wang et al. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. CVPR 2023 [11k citations]

#### Impact: medical image analysis

UNet++







#### Deep supervision leads to **marked improvement** for liver and lung nodule segmentation

Use deep supervision to force the **intermediate** feature maps to be semantically **discriminative** at each image scale

Z Zhou et al. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. DLMIA 2018 [9k citations] O Oktay et al. Attention U-Net: Learning Where to Look for the Pancreas. MIDL 2018 [~8k citations]

## Conclusion

#### **Deep supervision** offers several benefits for neural nets

- For relatively shallow networks, it provides strong regularization, helping to reduce test error.
- For deeper networks, deep supervision greatly relieves the vanishing gradient problem, which otherwise makes the learning process very challenging.
- Deep supervision allows combination with various loss types (e.g., multi-scale, coarse-to-fine, different modalities) at different layers for complex tasks
- Deep supervision enables early exit for real-time applications.

## Deeply-Supervised Nets Q&A

Chen-Yu Lee<sup>\*</sup> Saining Xie<sup>\*</sup> Patrick Gallagher Zhengyou Zhang Zhuowen Tu



\*equal contribution