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Context: rapid development of much deeper networks since 2012
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Challenges of training deeper networks back in 2013

30 Unclear how to scale network depth
effectively back in 2013 due to:

e Vanishing/exploding gradients
20 e Slow convergence

e Interpretable feature learning

e Optimization (init., LR, optimizer, etc)
10
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Proposed
Solution



Question: can we force intermediate layers to learn classifiable features?
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Our proposal: introduce auxiliary classifiers (deep supervision) at intermediate layers
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Our proposal: introduce auxiliary classifiers (deep supervision) at intermediate layers
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A loose assumption
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A loose assumption
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Deeply-Supervised Nets (DSN) on MNIST
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Deeply-Supervised Nets (DSN) on MNIST
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Deeply-Supervised Nets (DSN) generates more intuitive intermediate feature maps

w/ deep supervision w/o deep supervision
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Inspired by: M. Zeiler and R. Fergus. “Visualizing and understanding convolutional networks”, ECCV 2014.



Results

MNIST
Method Error(%)
CNN [13] 0.53
Stochastic Pooling [32] 0.47
Network in Network [20] 0.47
Maxout Networks[9] 0.45
DSN (ours) 0.39
CIFAR 10
Method Error(%)
No Data Augmentation
Stochastic Pooling [32] 15.13
Maxout Networks [9] 11.68
Network in Network [20] 10.41
DSN (ours) 9.78
With Data Augmentation
Maxout Networks [9] 9.38
DropConnect [19] 9.32
Network in Network [20] 8.81
DSN (ours) 8.22

CIFAR 100

Method Error(%)
Stochastic Pooling [32] 42.51
Maxout Networks [9] 38.57
Tree based Priors [27] 36.85
Network in Network [20] 35.68
DSN (ours) 34.57

SVHN

Method Error(%)
Stochastic Pooling [32] 2.80
Maxout Networks [9] 2.47
Network in Network [20] 2.35
Dropconnect [19] 1.94
DSN (ours) 1.92



Related work

M. A. Carreira-Perpinan and W. Wang, "Distributed optimization of deeply nested systems.", AISTATS 2014.

o  Penalty-based methods using alternating optimization

e P.Sermanet and Y. LeCun, "Traffic sign recognition with multi-scale convolutional networks”, IJCNN, 2011.

o  The output of the Tst stage, together with the final stage output, is also fed to the classifier

e ZTu, "Auto-context and its application to high-level vision tasks", CVPR 2008.
o  Trains classifiers by using iteratively refined probability maps from previous steps as context alongside image

features

e Y.Bengio et al. "Greedy layer-wise training of deep networks”. NIPS, 2007.

o  Solve optimization problems through layer-wise training

[non-exhaustive]



Reflections &
Impact



Reflections: GooglLeNet employed 2 auxiliary classifiers to aid gradient flow

GoogleNet

Szegedy et al. Going Deeper with Convolutions. CVPR 2015 [66k citations]



Reflections: many more approaches have then been proposed for better training

o BatchNorm LayerNorm
ResNets [266k citations] [61k citations] [15k citations]

InstanceNorm GroupNorm
[~5k citations] [~5k citations]




Input image X

Impact: edge detection

Holistically-Nested Edge Detection (HED)
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Figure 5. Results on the BSDS500 dataset. Our proposed HED frame-
work achieves the best result (ODS=.782). Compared to several recent
CNN-based edge detectors, our approach is also orders of magnitude faster.

The application of deep supervision to a fully
convolutional net (FCN) shows a great
performance boost and produces more intuitive
multi-scale feature maps.

S Xie and Z Tu. Holistically-Nested Edge Detection. ICCV 2015 [4k citations]



Impact: human pose estimation

Convolutional Pose Machines (CPMs)
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Intermediate supervision addresses vanishing
gradients for sequential structured prediction

SH Wei et al. Convolutional Pose Machines. CVPR 2016 [~4k citations]



Impact: scene parsing

(a) Image

Pyramid Scene Parsing Network (PSPNet)

(b) Ground Truth

Figure 4. Illustration of auxiliary loss in ResNet101. Each blue
box denotes a residue block. The auxiliary loss is added after the
res4b22 residue block.

The auxiliary loss helps optimize the learning process

H Zhao et al. Pyramid Scene Parsing Network. CVPR 2017 [17k citations]



Impact: image inpainting

Generative Image Inpainting with Contextual Attention
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J Yu et al. Generative Image Inpainting with Contextual Attention. CVPR 2018 [3k citations]



Impact: early exit for object detection

NAS-FPN
NAS-FPN
class+box — .
SUbnets e Attach classifier and box regression heads after
Fagtife all intermediate pyramid networks.
Pyramid
Network class= Do e This enables anytime detection which can
/' T generate detection results with early exit
|
xN

G Ghiasi et al. NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection. CVPR 2019 [2k citations]



Impact: object detection with coarse-to-fine deep supervisions

YOLOv?7

e Even for architectures that converge well, deep
supervision can still significantly improve the
performance

e Use lead head prediction as guidance to
generate coarse-to-fine hierarchical labels,

2X . "“ which are used for auxiliary head learning
1x [

CY Wang et al. YOLOV7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. CVPR 2023 [11k citations]



Impact: medical image analysis
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Use deep supervision to force the intermediate
feature maps to be semantically discriminative
at each image scale

Deep supervision leads to marked improvement
for liver and lung nodule segmentation

Z Zhou et al. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. DLMIA 2018 [9k citations]
O Oktay et al. Attention U-Net: Learning Where to Look for the Pancreas. MIDL 2018 [~8k citations]



Conclusion



Deep supervision offers several benefits for neural nets

e For relatively shallow networks, it provides strong regularization, helping to
reduce test error.

e For deeper networks, deep supervision greatly relieves the vanishing gradient
problem, which otherwise makes the learning process very challenging.

e Deep supervision allows combination with various loss types (e.g., multi-scale,
coarse-to-fine, different modalities) at different layers for complex tasks

e Deep supervision enables early exit for real-time applications.
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