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Abstract— The objective of this research is to estimate the
gaze point of a driver using epipolar geometry. The system
requires two video inputs from internal and external views of a
vehicle. We use SIFT image descriptor with L-2 norm distance
to find putative correspondences, and then we use RANSAC
algorithm to estimate robust fundamental matrix between two
views. Once the underlaying scene geometry is estimated, we
can further use affine transformation to model the distribution
of the reliable correspondence points across two views. Finally,
eye gaze point is estimated on the external reference image
plane by mapping the center point in the internal view to
the external view using the estimated affine transformation.
Experiment results show that epipolar geometry with affine
transformation can perform accurate driver’s gaze point esti-
mation for Computer Vision and Robotics Research Laboratory
(CVRR) video dataset and produce highest accuracy than pure
homography approach and epipolar line searching approach.
In addition, our system can also handle the exceptional case as
a driver looks at a mirror or a steering wheel which increases
the robustness of the gaze estimation system.

I. INTRODUCTION

A car with vision is an important step to achieve the
concept of smart vehicle which takes aim at providing timely
responses to drivers in order to avoid accidents in real world.
Many car accidents happen due to distraction while driving
[3], therefore a robust and reliable driver attention feedback
is essential for an active safety system. [13], [7], [8], [6],
[5] suggest that eye gaze is an important cue to detect driver
distraction. We would like to use computer vision techniques
to estimate eye gaze point and provide timely result of driver
attention.

[12] describes a passive driver gaze tracking system which
uses a global head model, specifically an Active Appearance
Model (AAM), to track the whole head. From the AAM,
the eye corners, eye region, and head pose are extracted
and then used to estimate the gaze. [15] proposes a hybrid
scheme to combine head pose and eye location information
to obtain enhanced gaze estimation. [2] introduces a 3D
eye tracking system where head motion is allowed without
the need for markers or worn devices. [16], [1], [4] utilize
an ellipse template matching scheme with sliding window
based searching to find eye gaze point. However, all listed
approaches require a camera faces at the driver. This camera
setting involves driver’s privacy and comfortableness. Also,
these systems require extremely complicated facial feature
extraction and facial model reconstruction, which makes it
impossible for real time applications in active safety systems.
Furthermore, the ellipse template might not be reliable in real
cases considering different head poses and eye sizes.

In this paper, we introduce an eye gaze estimation system

Fig. 1. Left and right images show the positions of two cameras. The
external camera is located in front of a car and the internal camera is
mounted on a driver’s head.

that only requires two video sequence inputs: the external
view and the internal view of a vehicle as shown in Figure
1. Also, we use epipolar geometry to model the relationship
of interest points between two views, and then apply affine
transformation to estimate the final gaze point in the external
view. The experiment results show that epipolar geome-
try with affine transformation outperforms homography and
epipolar line search approaches. The proposed system is
easy to implement without complicated facial model recon-
struction, and it requires low computational time. We can
achieve 19.91 pixels accuracy. This implementation shows
the possibility to perform active safety system for vehicles
in real world situation. This will be covered in section 2.

In addition, we further investigate two components of a ve-
hicle: a mirror and a steering wheel. These two components
are useful to detect when a driver looks both sides or looks
down when there is no strong matches for the frontal view
case. We apply the same system to these parts and extract
the distributions of orientations of SIFT matches for these
two parts, and choose the part with maximum distribution
concentration as the region where the driver looks at. The
result shows that the system can detect where the driver
looks at (front, sides, and down) and create the opportunity
of exploiting interior parts of a vehicle to detect driver’s
attention. This will be covered in section 3.

II. ALGORITHM: THE FRONTAL VIEW CASE

Figure 2 shows the pipeline of our system. In this sec-
tion we will cover the three main steps in our gaze point
estimation system for the frontal view case.

A. Feature Extraction

To find the reliable relationship of interest points between
internal view and external view, we have to use image
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Fig. 2. System pipeline of the eye gaze estimation algorithm.

descriptor to capture the texture information of images fast
and correctly. David G Lowe propose local scale-invariant
features transformation (SIFT) in [14], which is one of the
most powerful and popular feature extraction technique in
computer vision society. Figure 3 shows the result of interest
points detection by Laplacian of Gaussian filter. SIFT feature
extraction is then performed on these interest points.

B. Model of Stereo Images

We have to choose an appropriate method to model the
relationship of interest points between two images of the
same scene. Homography [11] is a powerful approach to
map points and lines of a pure planar between two stereo
images. However, we have a lot of objects without the
planar constraint in our dataset such as cars, pedestrian,
and buildings. Therefore, we have to be more carefully
when choosing such model. Epipolar geometry [11] is the
geometry of stereo vision without the pure planar constraint.
It is an reliable mathematical model when two cameras
view a 3D scene from two distinct positions based on the
assumption that the cameras can be approximated by the
pinhole camera model.

With an uncalibrated stereo rig, we can use the fun-
damental matrix [9] to model the relationship of points
between two views. The fundamental matrix F is a 3× 3
matrix which relates corresponding points in stereo images
with homogeneous image coordinates. The basic epipolar
constraint can be written as:

x′T Fx = 0 (1)

where x and x′ are homogeneous image coordinates of
the same points in image 1 and image 2. To compute
the matrix F correctly, we first use L-2 norm distance to
produce putative correspondences as shown in Figure 4.
We still can see a small amount of mismatch even though
the majority of the matching pairs are correct. To further
filter out the mismatching pairs, we use RANdom SAmple
Consensus (RANSAC) [10] algorithm to iteratively compute
the fundamental matrix until it converges. Figure 5 shows
the correspondence matches after RANSAC algorithm. We
can see that RANSAC with fundamental matrix can filter out
most of the outliers and still preserve true matches.

C. Gaze Point Estimation

The final step of our system is to estimate the gaze point
in the external view with the model we have. We assume
the driver look at the center of the internal view, and our
algorithm would find the correspondence point in the external
view. With a point x in image 1, we can compute the epipolar
line l in image 2 using

l = Fx (2)

With the epipolar line l in image 2, we can use normalized
cross correlation (NCC) to find the point with maximum
response along the line l with respect to the center point
in image 1. However, the center point in image 1 could have
no strong texture information, thereby producing uniform
responses along the epipolar line l in image 2. To overcome
this problem, we model the point transform function with the
affine model A based on the current correspondence matches:

x′ =

a b c

d e f

0 0 1

x = Ax (3)

where A has 6 degree of freedom (DOF) from a to f . Now
we can use affine transformation to map the center point
in the internal view to the external view very accurately
because the affine transformation is computed from robust
correspondence matches using RANSAC and fundamental
matrix instead of random points between two images. We
will show the differences between homography, epipolar line
search, and epipolar geometry with affine transformation in
the experiment section.

III. ALGORITHM: A MIRROR AND A STEERING WHEEL

In this section, we exploit two components (left mirror and
steering wheel) of a vehicle to determine where the driver
looks at.

A. Component Templates

It is hard to find a overlap region for internal and external
views when a driver looks extremely left or down, but we
still want to detect these cases for a driver distraction system.
An intuitive way is to crop a left mirror region and a steering



Fig. 3. SIFT feature extraction for internal view (left) and external view (right) of a vehicle.

Fig. 4. Putative correspondence using L-2 norm distance.

Fig. 5. Feature point correspondence after RANSAC with fundamental matrix.
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Fig. 6. System output for frontal view case. Epipolar geometry with affine transformation can achieve better eye gaze point estimation than other two
methods.

wheel region at a certain time sequence, and run the same
system for these two parts to get SIFT feature point matches.

B. Distribution of Orientations of SIFT Matches
To examinate SIFT feature point matches, we construct

three histograms of orientations of these match lines as



shown in Figure 7, 8, and 9. These histograms give statistical
information of how well the SIFT points are matched. If a
driver looks at front, then frontal view would give highly
concentrate distribution with only few peaks. If a driver looks
the left mirror, then frontal view would give several peaks
with low peak values.

C. Looking Region Determination

We also generate three corresponding histograms to repre-
sent ideal cases for these three parts (frontal, wheel, and left
mirror) as shown in bottom right of Figure 7, 8, and 9. If a
driver looks at a centain part then it should generate similar
histogram result as the ideal case. Goodness-of-fit allows us
to determine whether the observed histogram corresponds
to the ideal case. Chi-squared (χ2) distance between two
histograms hi and h j with dimension index k ∈ [1,d]

D(hi,h j) =
1
2

d

∑
k=1

(hi
k−h j

k)
2

hi
k +h j

k

(4)

is a good choice for comparing discrete probability distri-
butions. It performs better than Euclidean distance because
it gives higher weights for those bins with low bin values,
so it can emphasis more on those bad SIFT matches. Here
we use d ∈ [−90,90] so that the histograms have 180 bins
indivisually. We compute chi-squared distances for the three
parts and determine where the driver looks at with the lowest
chi-squared distance.

IV. EXPERIMENTAL ANALYSIS

We conduct experiment on the dataset provided by Com-
puter Vision and Robotics Research Laboratory (CVRR) at
University of California, San Diego. In this experiment we
use an Audi A8 sedan with Eight-speed Tiptronic transmis-
sion and quattro all-wheel drive. Also we use a video camera
in front of the vehicle and a logitech webcam mounted on
the driver’s head. Here we record 263 frames in real road
situation with a variety of noise such as cars, pedestrains, and
buildings. Interval video is 960×1280 and external video is
472×1024.

A. Frontal Case

To evaluate the performance of the system, we implement
three approaches and compare the eye gaze estimation accu-
racies and computation complexity in Table I. We also show
the result of three different approaches in Figure 6. Epipolar
geometry with affine transformation clearly outperforms pure
homography and epipolar line search methods in terms of
accuracies. The reason why homography model does not
work well is because the object in real world is not pure
planar. Also, epipolar line search is worse then epipolar +
affine is because the image could have no strong texture to
perform normalized cross correlation.
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Fig. 7. Top image shows SIFT matches for frontal view. Bottom left image
shows the distribution of orientations of SIFT matches. Bottom right image
shows the ideal distribution if the driver looks at front.
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Fig. 8. Top image shows SIFT matches for wheel view. Bottom left image
shows the distribution of orientations of SIFT matches. Bottom right image
shows the ideal distribution if the driver looks at wheel.

B. Left mirror and Steering wheel Cases

Table II shows the presicion and recall rates of three
vehicle parts detection. We also compute F-scores = 2 ∗
precision ∗ recall/(precision + recall) as shown in Table
III for three parts to determine which part has the best
performance. Here frontal view has highest F-score because
it usually has a large amount of overlap between external
view and internal view. However, left mirror part has lowest
F-score because when a driver looks at left, it usually has a
lot of non-mirror region that will interfere the SIFT matching
results. This result shows that we can detect not only the
frontal case, but also the left mirror region and the steering
wheel region if there is no strong matches for the frontal
view.

V. CONCLUDING REMARKS

In this paper we demonstrate three different approaches
to perform eye gaze estimation for drivers in real world
situation. The result shows that epipolar geometry is a
reliable method to model the relationship between the in-
ternal view and external view of a vehicle. With affine
transformation computed using robust correspondence, we
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Fig. 9. Top image shows SIFT matches for left mirror view. Bottom left
image shows the distribution of orientations of SIFT matches. Bottom right
image shows the ideal distribution if the driver looks at left mirror.

TABLE I
EXPERIMENT RESULTS FOR GAZE ESTIMATION OF THREE DIFFERENT

APPROACHES. SECOND COLUMN SHOWS THE AVERAGE DISTANCES

BETWEEN ESTIMATED GAZE POINT AND GROUND TRUTH POINT.

Method Distances (pixels)
Homography 295.62
Epipolar line search 60.29
Epipolar + Affine 19.91

can further improve the accuracy with mean position error
to 19.91 pixel. Our system can also detect important parts
of a vehicle and provide statistical information about where
a driver looks at. We can further improve the templates of
vehicle parts by using online learning for future work.
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