
Conditional Random Fields for Word Hyphenation

Tsung-Yi Lin and Chen-Yu Lee
Department of Electrical and Computer Engineering

University of California, San Diego
{tsl008, chl260}@ucsd.edu

February 12, 2013

Abstract

Word hyphenation is an important problem which has many practical applications.
The problem is challenging because of the vast amount of English words. We use
linear-chain Conditional Random Fields (CRFs) that has efficient algorithms to
learn and to predict hyphen of English words that do not appear in the training
dictionary. In this report, we are interested in finding 1) an efficient optimization
technique to learn linear-chain CRFs model and 2) a good feature representation
for word hyphenation. We compare the convergence time of three optimization
techniques 1) Collins Perceptron; 2) Contrastive Divergence; 3) limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS). We design two feature represen-
tation 1) relative binary encoding (RBE) and 2) absolute binary encoding (ABE)
and compare their performance. The experiment results show that Collins Per-
ceptron is the most efficient method for training linear-chain CRFs and ABE is
a better feature representation scheme that outperforms RBE by 7.9% accuracy.
We show our design is reasonable by comparing it to the state-of-the-art [2] which
outperforms this work only by 4.66% accuracy.

1 Introduction

The objective of this project is to learn a model to predict syllables of novel English words correctly.
A linear-chain Conditional Random Fields is an efficient way to apply a log-linear model to this
type of task. We model the states of two consecutive tags yi−1 and yi at ith letter position has
the posterior probability p(yi−1, yi|x̄;w) given observed a substring x̄ with the model parameter
w in a English word. Training a CRF means finding the parameter of the model that gives the best
possible prediction for each training example. The gradient based optimization method is a common
tool to approach the optimal parameter vector w∗ with the iterative process. In this report, we
implement three gradient-based methods 1) Collins Perceptron 2) Contrastive Divergence 3) limited-
memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) to solve the maximum likelihood problem
of linear-chain CRFs, and we implement all needed CRF-specific algorithms: Viterbi algorithm,
Gibbs sampling, and Forward-Backward algorithm for each training method respectively.

For each input word, there is always one output tag per letter. We tag each letter with either 1,
for hyphen allowed following this letter, or 0, for hyphen not allowed after this letter. We design
two feature encoding schemes 1) relative binary encoding (RBE) by considering relative position of
substring x̄ to the tag yi and 2) absolute binary encoding (ABE) by considering absolute position
of substring x̄ and tag yi. We test our implementation by using the dataset1 available online which
contains of 66,001 English words with syllables separated by hyphens. The experiment results show
that Collins Perceptron is the most efficient method for training linear-chain CRFs and ABE is a
better feature representation scheme that outperforms RBE by 7.9% accuracy. We show our design

1http://www.cs.ucsd.edu/users/elkan/hyphenation/

1



is reasonable by comparing it to the state-of-the-art [2] which outperforms this work only by 4.66%
accuracy.

2 Feature Representation

The feature representation is the key for training CRFs efficiently. We use indicator feature function
Fj(x̄, ȳ, p) to capture the relationship between tags y, substrings x̄, and the position argument p
within a length n word. We define yi = 1 for the ith letter if hyphen is allowed for the following
letter. We define Fj(yi−1, yi, x̄, p) = 1 if yi−1 or y equal to 1; otherwise, Fj(yi−1, yi, x̄, p) = 0.
The substring x̄ is any subtring with length from 2 to 5 that overlaps the position where yi = 1. We
define the tag equals to 0 and substring character equals to − at the start and end position (i = 0
and i = n + 1). In the following section, two different designs are introduced to encode position
argument p: 1) Relative Binary Encoding (RBE) and 2) Absolute Binary Encoding (ABE).

2.1 Relative Binary Encoding

RBE encodes position argument with the relative distance between the position of the first letter in
the substring x̄ and the position of the tag yi. For example, hy-phen-a-tion has feature function
Fj(yi−1 = 0, yi = 1, x̄ = hy, p = 1) and a feature Fj(yi−1 = 0, yi = 1, x̄ = yp, p = 0). The
position argument p in the former example is 1 because p = 2 − 1 is the subtraction of the the tag
position at y and first letter position of h of the substring. Two words can have the same feature
function Fj(yi−1, yi, x̄, p) at the different tag positions. This scheme can capture the characteristics
for suffix hyphenation, e.g., -ing, -ment, etc. RBE produces 249,815 different binary indicator
functions involve a substring that appears at least once in the training dataset.

2.2 Absolute Binary Encoding

ABE encodes position argument with the absolute position of the first letter of the substring. For
example, hy-phen-a-tion has feature function Fj(yi−1 = 0, yi = 1, x̄ = hy, p = 1) and Fj(yi−1 =
0, yi = 1, x̄ = yp, p = 1). ABE produce larger amount of indicator functions than RBE since it
distinguish the same substring and tag at different position. in other word, same suffix, e.g., -ing,
has different feature function given the different prefix. ABE has 335,569 different binary indicator
functions involve a substring that appears at least once in the training dataset.

3 Algorithm Design And Analysis

In this section, we introduce the principle of linear-chain CRFs. Collins Perceptron, Constractive
Diverfence, and L-BFGS are introduced to optimize the log likelihood of linear-chain CRFs. In this
report, we focus on analyzing the algorithm complexity for our implementation. We use the same
notation as in [1]. For detail equation derivations please refer to [1].

3.1 Linear-chain Conditional Random Field

A linear conditional random field is a way to apply a log-linear model to this type of work. We first
define the terminologies for the model: let x̄ be a sequence of words and let ȳ be a corresponding
sequence of tags. Here x̄ is an example, ȳ is a label, and a component yi is a tag. The standard
log-linear model is

p(y|x;w) =
1

Z(x,w)
exp

J∑
j=1

wjFj(x, y) (1)

In this project, we assume that each feature function Fj is a sum along the output label, for i = 1 to
i = n where n is the length of y:

2



Fj(x̄, ȳ) =

n∑
i=1

fj(yi−1, yi, x̄, i) (2)

We can then have a fixed set of feature functions Fj , even though the training examples are not of
fixed length. The equation above indicates that each low-level feature function fj can depend on the
whole sentence x̄, the current tag yi and the previous tag yi−1, and the current position i within the
sentence. Each low-level feature function is well-defined for all tag values in positions 0 and n+ 1.

3.2 Inference of CRFs

The best possible prediction could be obtained by solving the argmax problem

ŷ = arg max
ȳ

p(ȳ, x̄;w) (3)

We implement the Viterbi algorithm to solve the argmax problem efficiently. First, we can ignore
the denominator because it is the same when x̄ and w are fixed. We can also ignore the exponential
inside the numerator because the exponential function is a monotonic increasing function. Now we
want to compute

ŷ = arg max
ȳ

p(ȳ, x̄;w) = arg max
ȳ

J∑
j=1

wjFj(x̄, ȳ) (4)

Use the definition of Fj as a sum over the sequence to get

ŷ = arg max
ȳ

J∑
j=1

wj

n∑
i=1

fj(yi−1, yi, x̄, i)

= arg max
ȳ

n∑
i=1

gi(yi−1, yi)

(5)

where we define

gi(yi−1, yi) =

J∑
j=1

wjfj(yi−1, yi, x̄, i) (6)

for i = 1 to i = n. the x̄ argument of fj has been dropped in the definition of gi because we are
considering only a single fixed input x̄. For each i, gi is a different function. The arguments of each
gi are just two tag values, because everything else is fixed.

Let v range over the set of tags. Define U(k, v) to be the score of the best sequence of tags from
position 1 to position k, where tag number k is required to equal v. The score here means the sum of
gi functions taken from i = 1 to i = k. This is maximization over k − 1 tags because tag numbeer
k is fixed to have value v. After the U matrix has been filled in for all k and v, the final entry in the
optimal output sequence ŷ can be computed as ŷn = arg maxv U(n, v). Each previous entry can
then be computed as

ˆyk−1 = arg max
u

[U(k − 1, u) + gk(u, ŷk)] (7)

3



The time complexity of the Viterbi algorithm is O(m2nJ +m2n) time since we need O(m2J) time
to compute all gi functions and O(m2) for all U scores at each position i, and we have n positions
in total. Here m is the number of tags, n is the length of ȳ and J is the number of feature functions.
In our experiment, we only use feature function fj that has been fired at least once, so the factor J
is much smaller than then the actual number J .

3.3 Training of CRFs

The training task for a log-linear model is to choose values for the weights (parameters). Because of
the non-linear characteristic of the exponential function in the model, we could only use numerical
approaches to find those weights. As shown in [1], we have to find the weights that maximize the
log likelihood function of the training data. At the global maximum the entire gradient is zero, so
we have

∑
<x,y>∈T

Fj(x, y) =
∑

<x,y>∈T
Ey˜p(y|x;w)[Fj(x, y)] (8)

In order to compute the gradient efficiently, we could get the gradient value using different compu-
tational schemes are as follows.

3.3.1 Collins Perceptron

We could approximate the probability mass function as a indicator function that has value 1 on the
most likely y value. This means that we use the approximation

p̂(y|x;w) = I(y = ŷ),where ŷ = arg max
y

p(y|x;w) (9)

Then the gradient update rule simplifieds to the following rule:

wj := wj + λFj(x, y)− λFj(x, ŷ) (10)

where ŷ could be found using the Viterbi algorithm as shown above. One update by the Collins
perceptron method cause a net increase in wj for features Fj whose value is higher for y than for ŷ.
It thus modifies the weights to directly increase the probability of y compared to the probability of
ŷ. If ŷ = y, then there is no change in the weight vector, and this is reason why the computational
time for one epoch is decreasing as the weights are getting better. The time complexity of Collins
perceptron is O(m2nJ + nJ) = O(m2nJ) because for each update iteration we need to spend
O(m2nJ) for Viterbi algorithm, and we need to spend O(nJ) to compute Fj for n positions to
update the J weights. Note that the number of updating iteration decreases as the model becomes
better because only few ŷ 6= y.

3.3.2 Contrastive Divergence

The idea of contrastive divergence is to obtain a single value y∗ that is somehow similar to the
training label y, but also has high probability according to p(y|x;w). We implement the Gibbs
sampling to obtain the “evil twin” y∗. Gibbs sampling relies on drawing samples efficiently from
marginal distributions as shown in [1]. We can get a stream of samples by the following process:

(1) Select an arbitrary initial guess y =< y1, y2, ..., yn >.
(2) Draw y′1 according to p(y1|x, y2, ..., yn);
draw y′2 according to p(y2|x, y′1, y3, ..., yn);
draw y′3 according to p(y3|x, y′1, y′2, y4..., yn);
and so on until y′n.
(3) Replace y1, y2, ..., yn by y′1, y

′
2, ..., y

′
n and repeat from (2)

In our implementation, we randomly select a training label y as the initial guess instead of arbitrary
initial guess, and then we only execute the process one round for efficiency. The time complexity of
Gibbs sampling is O(m) for a single tag yi once all gi matrices have been computed and stored.

4



3.3.3 L-BFGS

L-BFGS is a quasi-Newton optimization method which approximates Hessian matrix by the gradi-
ent. The gradient g of linear-chain CRFs is:

g =
∑

<x,y>∈T
Fj(x, y)−

∑
<x,y>∈T

Ey˜p(y|x;w)[Fj(x, y)] (11)

The expectation of feature function is the computation bottleneck because it involves computing
partition function and p(yi−1, yi|x̄;w). Forward and backward algorithm is an efficient method to
compute linear-chain graph. Forward algorithm computes α(k, u) that starts from k = 0 and ends
at k = n:

α(k + 1, v) =
∑
u

α(k, u)[exp(gk+1(u, v))] (12)

α(k, u) means the unnormalized probability that has state u at position k given observed fist k − 1
nodes. Note that α(0, u) Note that we initialize α such that α(0, y) = I(y = START ).

Backward algorithm computes β(u, k) that starts from k = n+ 1 and ends at k = 1:

β(u, k) =
∑
v

[exp(gk+1(u, v))]β(v, k + 1) (13)

α(k, u) means the unnormalized probability that has state u at position k given observed last n− k
nodes. Note that α(0, u) Note that we initialize β such that β(u, n + 1) = I(y = STOP ). The
partition function now can be computed as Z(x̄, w) =

∑
v α(n, v). The expectation of feature

function j is

Ey˜p(y|x;w)[Fj(x, y)] =

n∑
i=1

∑
yi−1

∑
yi

fj(yi−1, yi, x̄, i)
α(i− 1, yi−1)[exp(gi(yi−1, yi)]β(yi, i))

Z(x̄, w)

(14)
We needO(m2J) to compute gi(u, v). Both forward and backward algorithms take the advantage of
linear-chain property and only requireO(mn) to compute. Partition function only needsO(m) after
α(n, v) is available. The bottleneck is to evaluate expectation of feature function which requires
O(Jnm2) to compute. To sum up, compute true gradient is much more expensive than Collins
Perceptron and Constractive Divergence.

4 Experimental Results

In this section, we discuss the setup and result of two experiments. We compare the performance
of three different optimization techniques introduced in Section 3 and two feature representation
schemes introduced in section 2.

4.1 Experimental Design and Setup

?We first design experiment to find the most efficient algorithms to train CRFs described in Section
3. First 5000 words in the training dictionary are selected as the training and validating data to
evaluate the optimization performance. We use 90% of total words for the training data and the
rest 10% for validation. We measure the time spent and the error rate of different methods for each
epoch to compare their performance. We measure performance through a relative long duration (30
epoch) to ensure the training process converges.

We measure the hyphenation accuracy with the whole dataset that contains 66,001 words. We use
90% as training data and 10% as validation set which is the same experiment setup as [2]. Collins
perceptron, which is the best algorithm among the methods we try in the previous experiment, is
used for training. We measure the miss rate at the end of every epoch and run optimization through
40 epochs for ABE and RBE feature representation schemes introduced in section 2.

4.2 Convergence Analysis of Training CRFs

Figure 1 shows the performance of three different optimization techniques. Figure 1a shows Con-
stractive Divergence is slightly faster than Collins perceptron and both of them greatly outperforms

5



0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

40

number of epoch

se
co

nd
s

 

 

Collins Perceptron
Contrastive Divergegnce
L−BFGS

(a) Time spent for each epoch.

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

number of epoch

er
ro

r 
ra

te

 

 
Collins Perceptron
Contrastive Divergegnce
L−BFGS

(b) Error rate.

Figure 1: The performance of different optimization techniques is compared by 1a the time to run
for each epoch and 1b error rate of word hyphenation.

L-BFGS. We observe L-BFGS spends 3 more times than other algorithms for an epoch which in-
dicates L-BFGS is much slower than Collins perceptron and Constractive Divergence. The result
makes sense because the latter methods approximates the true gradient computation which is the
computation bottleneck of L-BFGS. We also observe the time spent of Collins perceptron and Con-
stractive Divergence decreases with training epoch from 15 seconds to 4 seconds an epoch. This
observation suggests that the skip of parameter update when ŷ = y saves the significant computa-
tion time.

Figure 1a shows the error rate of different algorithms. We can find Collins perceptron and L-BFGS
converge to the same error rate but Constractive Divergence converges to the error rate about 3%
higher. This can be explained by the suboptimal ŷ found by Gibbs sampling to approximate true
gradient distribution. Since we only run one iteration for Gibbs sample, it is not surprising that Gibbs
sample stuck at the suboptimal point. The problem may be able to solve by adding more iterations
for Gibbs sampling but it is not computational economics to do that since . We can conclude from
Figure 1a that Collins perceptron has the advantage of fast convergence and stable convergence to
the global optimal point. As the result, we will apply Collins perceptron to evaluate hyphenation
performance on the whole dataset.

4.3 Accuracy Evaluation

Figure 2 shows the performance of different feature representation schemes. We use 90% data for
training and 10% data for testing on whole dataset. Figure 2a shows RBE representation is faster than
ABE representation at training step. This is because RBE only produces 249,815 different binary
indicator functions while ABE has 335,569 different binary indicator functions and the complexity
of Collins perceptron is linear to the dimension of feature. Figure 2b shows RBE has lower error
rate than ABE by 7.9%. The reason might be that the relative position of the input string to the tag
can capture the suffix of a word and thus generalize better than encoding scheme of ABE.

In Table 1, we report the performance of different methods and our implementation. Here we use
RBE as feature representation scheme and Collins perceptron as our training approach. We compare
our result with commercial products and the algorithm listed in [2] by the same evaluation method.
Our implementation could achieve 3rd lowest error rate compared to all methods. The algorithm
in [2] has lowest error rate and it may be because they use 2,916,942 different indicator functions
which is 11 times as ours.

5 Discussion

In this report, we solve text hyphenation prediction with linear-chain CRFs. Three different opti-
mization techniques are implemented and compared. We conclude Collins perceptron is the most
efficient and stable algorithm to optimize CRFs in this problem. We apply Collins perceptron to

6



0 5 10 15 20 25 30 35 40 45
200

300

400

500

600

700

800

900

1000

1100

number of epoch

se
co

nd
s

 

 
RBE
ABE

(a) Time spent for each epoch.

0 5 10 15 20 25 30 35 40 45
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

number of epoch

er
ro

r 
ra

te

 

 
RBE
ABE

(b) Error rate.

Figure 2: The performance of different feature representation schemes is compared by 2a the time
to run for each epoch and 2b error rate of word hyphenation.

Method TP FP TN FN % error rate
Place no hyphen 0 0 439062 111228 20.21
TEX (hyphen.tex) 75093 1343 437719 36135 6.81
TEX (ukhyphen.tex) 70307 13872 425190 40921 9.96
TALO 104266 3970 435092 6962 1.99
PATGEN 74397 3934 435128 36831 7.41
[2] 108859 2253 436809 2369 0.84
Our implementation 108790 28170 411730 2100 5.50

Table 1: Performance on the English dataset.

solve the 66,001 English words dataset with two feature representation schemes. We find RBE fea-
ture representation scheme has the advantage of less binary indicators and lower error rate than ABE.
We obtain 5.5% error rate for RBE. Compared the error rate to existing methods in [2], the result is
competitive to the commercial products listed in Table 1. However, the well-tuned state-of-the-art
[2] still outperforms by 4.66% the implementation in this report.

References

[1] C. Elkan. Log-linear models and conditional random fields. In UCSD CSE250B Lecture Note,
2013.

[2] N. Trogkanis and C. Elkan. Conditional random fields for word hyphenation. In ACL 2010,
Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, July
11-16, 2010, Uppsala, Sweden, pages 366–374. The Association for Computer Linguistics,
2010.

7


