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Abstract.  Video-based re detection is currently a fairly common applcation with the
growth in the number of installed surveillance video systesa Moreover, the related pro-
cessing units are becoming more powerful. Smoke is an earliga of most res; therefore,
selecting an appropriate smoke-detection method is esséat However, detecting smoke
without creating a false alarm remains a challenging probla for open or large spaces
with the disturbances of common moving objects, such as patieans and vehicles. This
study proposes a novel video-based smoke-detection methiodt can be incorporated into a
surveillance system to provide early alerts. In this studythe process of extracting smoke
features from candidate regions was accomplished by analgg the spatial and tempo-
ral characteristics of video sequences for three importanfeatures: edge blurring, grad-
ual energy changes, and gradual chromatic con guration chages. The proposed spatial-
temporal analysis technique improves the feature extraain of gradual energy changes. In
order to make the video smoke-detection results more reliédy these three features were
combined using a support vector machine (SVM) technique and temporal-based alarm
decision unit (ADU) was also introduced. The e ectiveness d the proposed algorithm
was evaluated on a PC with an Intek Core™ 2 Duo CPU (2.2 GHz) and 2 GB RAM.
The average processing time was 32.27 ms per frame; i.e., th@oposed algorithm can
process 30.98 frames per second. Experimental results shedvthat the proposed system
can detect smoke e ectively with a low false-alarm rate and ahort reaction time in many
real-world scenarios.

Keywords: Alarm decision unit (ADU), Support vector machine (SVM), Su rveillance
system, Video smoke detection (VSD), Wavelet transform

1. Introduction.  Numerous res threaten human lives and property throughoutthe
world every day; thus, there is a need for a reliable re-det#ion technique. An enclosed
re may include some or all of the following phases of develogent: (1) incipient phase, (2)
growth phase (pre- ashover), (3) ashover, (4) fully devebped phase (post- ashover), (5)
decay phase, and (6) extinction. Ignition is the start of redevelopment. The duration of
the \incipient” period, shown in Figure 1, is dependent on aariety of factors including the
fuel type, physical situation, and quantity of available oygen. Heat generation increases
during this period, producing light to moderate volumes of moke. The characteristic
smell of smoke is usually the rst indication that an incipi@t re is underway. Early
detection at this stage, either human or automatic, can corndl the re before signi cant
losses occur if it is followed by a timely response from quall re- ghting professionals
[1].

Conventional point-based sensors typically detect the psence of smoke particles by
ionization or photometry [16], whereas video-based smo#letection (VSD) systems use
a newly developed technique based on machine vision, imagegessing, and pattern-
recognition techniques. VSD provides advantages over triéidnal methods, such as fast
response, non-contact, and the absence of spatial limit]2
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Figure 1. Duration of the incipient period of a re (Source:
http://www.det- re.com.sg/info.htm

Table 1. State-of-the-art VFSD techniques
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W. Phillips Il et al. [3] RGB X X X X X 2002
F.Gomez -Rodriguez et al 4] X X X 2002
F. Gomez -Rodriguez et al [5] X A X 2003
T-H. Chen et al. [6] RGB/HSI X X X X 2004
C.-B. Liuand N . Ahuja [7] HsSV X X X 2004
B.U. Toreyin et al. [8] YUv X X X X 2005
B.U. Toreyin et al. [9] YUV X X X X 2006
B.U. Toreyin et al. [10] RGEB X X X X 2006
G.Marbach et al [11] Yuv X X X 2006
Z.Xuand J. Xu[12] X X X X X 2007
T. Celik et al. [13] RGB X X X X X 2007
T. Celik et al. [14] YCbCrRGB/HSV X X 2007
B. Lee and D. Han [15] RGB X X X X X 2007
Z. Xiong et al [16] X X X X 2007
P. Piccinini et al. [17] RGEB X X X X 2008
PV .K.Borges et al [18] RGB X X 2008
S. Calderara et al. [19] RGB X X X X X 2008
F. Yuan [20] RGB X X X X 2008
F-X.Yuetal [21] RGB X X 2008
X. Qi and J. Ebert [22] RGB/HSV X X X X 2009
R. Yasmin [23] RGB/HSI X X X X X 2009
J. Gubbi et al [24] X X X X X X 2009
C.Yu et al. [25] X X X X 2010
S. Calderara et al. [26] RGB X X X X X 2010
Proposed Method RGB X X X X X X X X

Video re and smoke detection (VFSD) has appeared with the delopment of com-
puter technology and digital image-processing technolagyideo-processing techniques
for automatic re and smoke detection have been a hot topic icomputer vision over the
last decade. Several vision-based detection algorithmsvieabeen proposed in literature,
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which has led to a large number of techniques for detecting éhpresence of res at an
early stage. Table 1 provides an overview of the state-ofaékart VFSD techniques, i.e.,
the most frequently referenced papers [2].

Color detection was one of the rst VFSD detection techniqgue and it remains by
far the most popular method. The majority of color-based VFB approaches make use
of RGB color space, sometimes in combination with HSI/HSV saturan [6,22]. The
main rule-based techniques used to detect appropriate \ fecolored pixels are Gaussian-
smoothed color histograms [3], statistically generated low models [14], and blending
functions [19]. The test results with color-based re detdmn in the referenced studies
were initially promising, but variations in color, density lighting, and background question
its applicability in real-world detection systems. A far mee promising color-based smoke-
detection method is the detection of a decrease in the chramaince [9], which exploits the
semi-transparent characteristics of smoke in the incipiephase.

Moving-object detection is another technique that is fregently used as a rst step
in VFSD to eliminate stationary non-smoke objects. To det@gossible motions caused
by re, any moving area in a video frame is detected using a mioin-segmentation algo-
rithm. Further analysis of moving regions is required to dermine whether the motion is
due to smoke or an ordinary moving object. The most e ectivelgorithms for perform-
ing moving-object detection are background subtraction [20,12,13,16,17,19], temporal
di erencing [15], and optical ow [4,5].

Other frequently used re-detection techniques include c¢ker detection [8-11,16,22]
and energy analysis [9,17,19]. Both focus on the temporaliaior of ames and smoke.
However, the icker frequency of smoke varies with time. Ths, smoke- icker detection
does not appear to be a very reliable technique. A more intesttng method for detecting
the temporal behavior of smoke is energy analysis [17], whics described further in
Subsection 2.3.2.

Another interesting approach for smoke detection is the disder analysis of smoke
regions over time. Frequently used metrics include the randness of area size [18,27],
boundary roughness [9], and turbulence variance [16]. Tleemetrics di er in de nition,
but the outcome obtained by using each is almost identical.

Sub-blocking is commonly used in VFSD systems to simplify dnmprove the detection
process, although it is not directly related to re charactestics. Sub-blocking [19,23]
reduces measurement disturbances; i.e., it Iters out errs and measurement inaccuracies.
Input images are subdivided into blocks of size n, typically containing 16 16 pixels,
and a block value is computed as the average of all the pixellvas in the block. Further
analysis is then performed at the block level, rather than athe pixel level.

The visual features used for VFSD in previous studies can bevidled into four cate-
gories: (1) motion, (2) appearance, (3) color, and (4) enerdtexture). However, none
of these features is perfect, because each feature can cdats® alarms in certain situa-
tions. Therefore, none of the existing algorithms is su ciatly robust and exible enough
to overcome all known problems typically encountered durghautomatic video re and
smoke detection, such as lighting conditions, scene comptg and shadows. Recent
research has combined various features to reduce the faddarm rate [24,27,28].

This study proposes a novel smoke-detection approach ussjatial and temporal analy-
ses, which is based on the block-processing technique. Timsthod analyzes energy-based
and color-based features within the spatial, temporal, andpatial-temporal domains, be-
fore all the proposed features are combined using an SVM dasr. To decrease the false-
alarm rate and maintain a high detection rate with a short reation time, a temporal-based
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alarm decision unit (ADU) is proposed. Experimental resu#t show that the proposed al-
gorithm can detect smoke with a low false-alarm rate and a stiadeaction time in many
real-world scenarios.

2. Video Smoke-Detection System.

2.1. System architecture. = Smoke detection is a crucial task in many video surveillance
applications and it could have a great impact in raising thedvel of safety in urban
areas. However, video analysis tasks for smoke detectiore arot trivial because of the
variability of shape, motion, and texture patterns of the sroke, where the appearance
is also dependent on di erent luminance conditions, backgunds, and scene colorations
[19]. Thus, the majority of previous studies focused on a spie and speci ed environment,
such as indoors [23], outdoors [12], and tunnels [15].

We propose a novel smoke-detection algorithm to provide ger exibility to VSD
and make it more suitable for a variety of conditions. Figur@ shows the proposed VSD
system architecture, which includes candidate-region exiction, a feature-extraction unit,

a classi cation unit, and a veri cation unit.

Candidate-region extraction:

This requires the identi cation of candidate regions by chage detection [29], using
a combination of temporal di erence and background subtrdion techniques. Sub-
blocking is also applied to achieve high computational penfmance.

Feature extraction:

This is directed at the ultimate goal of a high detection ratewith a low false-alarm
rate for a VSD system. This method exploits energy-based amdlor-based features
of the candidate regions within spatial, temporal, and sp&l-temporal domains.
Classi cation:

All the analyzed local features are combined using a supporéctor machine (SVM)
algorithm. The SVM is trained and online testing is very rapl using a C++ program,
which makes it suitable for real-time applications.

Veri cation:

A temporal-based ADU is introduced as the veri cation mechaism to reduce the
false alarms and make the smoke-detection results more rgband exible enough to
overcome common problems encountered by automatic VSD sgsts, such as scene
complexity and light re exes.

2.2. Candidate-region extraction. The identi cation of moving objects in video se-
quences is a fundamental and critical task for many computerision applications. To
detect possible motions caused by smoke, the moving part incarrrent video frame is
detected using a motion-segmentation algorithm. Further raalysis of moving regions is
necessary to determine whether the motion is due to smoke or ardinary moving object.
The most e ective algorithms for moving-object detection ee background subtraction
[9,10,12,13,16,17,19], temporal dierencing [15], and tigal ow [4,5]. Temporal dif-
ference technigues are based on the subtraction of two conisteve frames followed by
threshold detection [30]. Temporal di erence techniquesan e ectively adapt to a chang-
ing environment, but they are usually incapable of extractig the complete contours of
moving objects [31]. Background subtraction techniques @&t moving objects by cal-
culating the di erences between the current frame and backgund images for each pixel
and applying threshold detection [32]. Background subtraion techniques are capable of
identifying most pixels involved in the motion and they are Ighly sensitive to dynamic
changes in the environment, such as lighting or extraneousests [31]. Optical ow tech-
niques detect moving objects by estimating the motion eld bfore merging motion vectors
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Figure 2. System architecture of the proposed VSD technique
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Figure 3. Framework for the candidate-region-extraction process

that share similarities. However, most optical ow technigies are computationally com-
plex and sensitive to noise, which leads to inadequate rdahe processing of full-frame
video streams [33].

In this study, a hybrid algorithm was developed, which was siilar to change detection
[29], for detecting moving objects using a combination of bkground subtraction and
temporal di erence techniques with a logical \AND" operata, as illustrated in Figure 3.

The temporal di erence method was implemented by subtraatig framet 1 from
framet and regions with obvious intensity variation were consided foreground regions.
Background subtraction involves a similar method, but in tis study, a constructed back-
ground image instead of the frame 1 was used. We applied the most common and
robust method for background construction, the Gaussian Miure Model (GMM) [34],
which models each pixel as a Gaussian mixture using an onlig#M algorithm to up-
date the model. Figure 4 shows the foreground segmentatiochgéeved by background
subtraction using the GMM model.

Tracking smoke targets by foreground segmentation is a nssary step in an object-
based approach to temporal smoke analysis. However, smolegions appear and dis-
appear frequently because of a special particle property lekited during ignition and
combustion (as shown in Figure 5); therefore, tracking or afyzing the target using an
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(b) GMM background image

(c) Current image (d) Foreground image

Figure 4. Foreground segmentation using background subtraction (GM)

Figure 5. Smoke regions appear and disappear continuously

object-based method is ine cient. Therefore, a block-bagsktechnique provides a more
e ective method for solving this problem.

Figure 6 shows that only background subtraction values anegtporal di erences larger
than the prede ned thresholds are regarded as candidatesntaining moving objects,
which reduces the computational cost. Further analysis ohese moving regions is neces-
sary to determine whether the motion is due to smoke or ordima moving objects [8].
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Figure 6. Results of block processing

2.3. Feature extraction.

2.3.1. 2-D spatial wavelet analysisSmoke is semi-transparent, so the edges of image
frames can lose their sharpness and this leads to a decreasthée high frequency content
of an image. To identify smoke in a scene, the background wasimated and any decrease
in high-frequency energy was monitored using a spatial wdge transform of the current
and background image [8,9].

The whole 2-D spatial wavelet transform can be decomposed #e horizontal and
vertical wavelet transforms shown in Figure 7(a). The dirg®n from left to right is called
\decomposition”, while the reverse direction is called \sgthesis".

Honzontal Honzontal
Low-Band High-Band
Vertical Vertical
Decomp osition Decomposition L aelE ) L8 gad]
a0 - - Horizontal Horizontal R LL HL
iz mi bosgs Low-Band High-Band
' ' Honzontal Honzontal
. L H . Low-Band High-Band
Synthesis Synthesis Vertical Vertical
High-Band High-Band
LH HH
(a) 2-D wavelet transform
Rows (along m)
- High Pass Filter » 2{ —» HHm,n]
Columns (along n)
= IHigh Pass Filter - 2 * = Low Pass Filter - 2 + —» HI.[m,n]
I[m,n] —
p| Low Pass Filter - 24 p| High Pass Filter s 2 —» LH[mjp]
| Low Pass Filter » 2{ —» LL[m,n]

(b) Coe cients of the 2-D wavelet transform

Figure 7. 2-D wavelet transform and coe cients
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We use L and H to represent the low-band and high-band inforrtian, respectively. Fol-
lowing the 2-D spatial wavelet transform, the whole image iseparated into four regions:
horizontal low-band vertical low-band (LL), horizontal lonv-band vertical high-band (LH),
horizontal high-band vertical low-band (HL), and horizontl high-band vertical high-band
(HH).

Research has shown that wavelet sub-images contain the tere¢ and edge information
of the original image. Edges produce local extremes in wasklsub-images [27,35,36].
The wavelet sub-images LH, HL and HH contain horizontal, véical, and diagonal high-
frequency information from the original image, respectie If smoke covers one of the
edges of the original image, then the edge initially becomésss visible and it may dis-
appear from the scene after some time as the smoke thicken®]8 Figure 8 shows the
original image and the single level wavelet sub-images.

(b) Frame with smoke
Figure 8. Original image and single-level wavelet sub-images

The edges and texture contribute to the high-frequency infmation of the image; thus,
the high-frequency information becomes even less visible #the smoke obscures part of
the scene. This characteristic property of smoke is an acete indicator of its presence
in video frames, which also increases the possibility of @etining the presence of smoke
using wavelet sub-images, as shown in Figure 8. The spatialeegy is evaluated block-
wise by dividing the image into regular blocks of a xed sizeral summing the squared

contribution from each coe cient image, as shown in Figure (b) [19,26].
X

E (B 1) = LH (m;n)>+ HL (m;n)*>+ HH (m;n)? (1)

m;n 2By
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where By is the kth block of the scene and; is the input image at timet.

The energy value of a specic block varies signi cantly ovetime in the presence of
smoke. This energy drop can be further emphasized by commgi the ratio between
the image energy of the current input framd, and that of the background modelBG;.
The energy ratio has the advantage of normalizing the energialues and it allows a fair
comparison between di erent scenes when the block energynciself vary signi cantly.
The ratio of the block By is given by

E (Bk: 1)
E (Bk;BGy)

2.3.2. 1-D spatial-temporal energy analysisSmoke is semi-transparent during the early
stages of a re and it becomes less visible as time elapses.u$han instantaneous disap-
pearance or appearance of a wavelet extremum in the currenfiine cannot be attributed
to smoke. This type of change corresponds to an ordinary mag object covering an
edge in the background or boundary of a moving object; hencgjch changes are ignored.
In this study, a one-dimensional temporal wavelet analysisf the spatial energy ratio

is proposed as an indicator of this phenomenon. As shown ingkre 9, after applying
the 1-D wavelet transformation to the signalS, the high-band (details) and low-band
(approximations) information can be obtained and they are ehoted asD and A, respec-
tively.

(Bk;1;BGy) = (2)

h[n]
(D=
—— l—£ —_— l b Snraegion
S high-pass

.r'h'\,/ﬂ\_' gln] s

Moo
L D_ —_— —_— /\/ J.i
low-pass PNV A ¥

Figure 9. Block diagram of 1-D wavelet transform

Figure 10 shows the results of a comparison of the energy arsaé for an ordinary
moving object and smoke. As shown in Figure 10(c), ordinaryokd moving objects
produce a great quantity of variations in the energy ratio. h contrast, smoke has a
smoother variation in the energy ratio, as shown in Figure 10).

Figures 10(e) and 10(f) show that an appropriate thresholdan be used to determine if
the candidate region is smoke. The likelihood of a candidatdock being a smoke region
is inversely proportional to the parameter :

jD[n]j
(Bk) = nT (3)

where D[n] is the high-frequency information of the energy ratio and N is a number
representing the amount of time with a nonzero value for theefails.

2.3.3. 1-D temporal chromatic con guration analysis. In this study, color information was
used as the third characteristic for identifying smoke in aideo. Smoke is semi-transparent
when it initially starts to expand, which leads to a decreasa the chrominance values of
pixels. This provides another sign allowing the di erentition between smoke and ordinary
moving objects.
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Photometric invariant features are functions used for degbing the color con gura-
tion of each image coordinate while discounting local illumation variations, and the
normalizedRGB color space is commonly used for photometric invariant feates. There-
fore, the normalizedRGB color space was used in this study for smoke-detection ansiky.
The normalizedRGB color space is obtained by dividing thdR, G, and B coordinates by
their total sum, as shown in (4), which projects a color vectoin the RGB cube onto a
point on the unit plane given byr + g+ b= 1.

R G B
“R+6+8 9" R+c+B P R+G+ B “)

Based on the empirical analysis, smoke a ects every compaoné the RGB color space
of the obscured point, but it does not drastically change theon guration of the rgb color
system. This constraint can be represented by

r(Be;le) = r(Bu;lee )
g(Bk;lt) = 9(Bi;lt+ 1) (5)
b(Bk;lt) = b(Bx; It )

when candidate blocks are obscured by a smoke region instedardinary moving objects.
This investigation drew the RGB color histogram of a speci ¢ block from three di erent
positions in a video sequence to characterize the presencalbsence of smoke. The color
histogram distribution in Figure 11(c) is similar to that in Figure 11(a). However, the
presence of a pedestrian produces very di erent color higiam distributions, as shown
in Figures 11(b) and 11(a).

Figure 12 shows the details (high-frequency information)fdhe three channels in the
rgb color space using 1-D DWT. Figures 12(g) and 12(h) show that ore details are
produced when the selected block is obscured by ordinary isomoving objects than
when the selected block is obscured by smoke, in which caserthis a smooth variation
in the rgb color space with few details. Therefore, it is easy to seleah appropriate
threshold value for identifying whether a candidate regiogontains smoke. In this study,
we chose as the color feature descriptor, which is calculated by

(Bx) = max k(D [n];Dg[n]; Dy [n])k, (6)
n2interval
whereD,[n], Dg4[n] and Dy[n] represent the details of the', g and b channels, respectively.
Again, the likelihood of the candidate block being a smokegen is inversely proportional
to the parameter .

r

2.4. Classi cation and veri cation. The three features described in the previous sub-
section are partially complementary, but they have di ereh physical meanings. The 2-D
spatial wavelet feature in (2), , distinguishes high-texture objects from smoke. The 1-D
temporal energy feature in (3), , distinguishes objects that suddenly change texture in
the candidate block. The 1-D temporal chromatic con guratn feature in (6), , distin-
guishes objects that suddenly change their color structuia the candidate block. In this
subsection, these three proposed features are combined a@gature vectorx =[; ; ]
for each candidate block before being classi ed using a SV urthermore, a veri cation
process is proposed to reduce the false-alarm rate.

2.4.1. Support vector machinesSVMs have considerable potential as classi ers for sparse
training data because they were developed to solve classition and regression problems.
SVMs have similar roots to neural networks, and they can prade universal approxima-
tions for any multivariate function to any desired degree aficcuracy. Instead of minimiz-
ing an objective function based on training, SVMs attempt taminimize a bound for the
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(a) Original image

(c) Image obscured by smoke

Figure 11. RGB color histogram of a speci ¢ block

generalization error. SVMs have gained wide acceptance baese of their high general-
ization ability over a wide range of applications [37,38] ahtheir improved performance
over traditional machine-learning methods, such as radiséhsis function networks [39] and
back-propagation neural networks [40]. More details on SVhhplementations are found
in [41].

The proposed system used LIBSVM tools [42] to train the classr for smoke detection.
We randomly selected 1000 candidate blocks, i.e., 500 as tha&ining sample set and the
remainder as the test sample set. The feature vectar =[ i; i; ;] was found for thei-th
candidate block. Training data were manually labeled and a &ussian kernel function was
selected. Two crucial parameters were required. The rst vgathe gamma (g= 1/ )
value of the kernel function, while the second was the cost €) value of a penalty for the
misclassi ed data. This study performed a ten-fold crossalidation to avoid an over- tting
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Figure 12. Comparison of color analysis for ordinary moving object ansmoke
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Figure 13. Blockwise output from SVM classi ers

(b) Connected-block-labeling result of (a)

Figure 14. Connected-block-labeling results

situation. The parameters for our training data were g =8 and ¢ = 32768. We also
selected thirty- ve support vectors (SVs) for our model on he basis of the SVM training
results. Figure 13 shows the online blockwise output datadm SVMs after o ine training.
Solid blocks represent the possible regions of smoke obgeathile hollow blocks represent
the possible regions of non-smoke objects. These classilddcks were submitted to the
next stage where connected blocks were labeled before fertlveri cation.

2.4.2. Connected block labelingConnectivity between pixels is a fundamental concept
that simpli es the de nition of humerous digital image coneepts, such as regions and
boundaries [43]. We further veri ed the presence of smokeing the connected-block-
labeling technique, which scans an image and groups its bksdnto components on the
basis of block connectivity, which is similar to connectedoenponents labeling. Figure 14
shows the results of the connected-block-labeling process

When the ratio between the number of smoke blocks and the numbof total blocks in a
speci c label is larger than a prede ned value, all blocks ithis label are colored \red" to
indicate smoke regions and \green" to indicate non-smokegi®ns, as shown in Figure 15.
This veri cation can eliminate falsely detected candidateblocks inside ordinary moving
objects and smoke regions.

2.4.3. Alarm decision unit. Occasionally, video surveillance systems place a camera to
close to a road. In this situation, the presence of a large Jele produces an exposure
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iy
S —

(a) Sample frame (b) Block labeling (c) Detection result

Figure 15. lllustration of smoke detection based on area ratio

Figure 16. False alarms caused by exposure adjustment (Red indicates
blocks with smoke and green indicates non-smoke blocks)

adjustment (as shown in Figure 16), which is done by a photaestric device that auto-
matically controls the photographic exposures due to the evall brightness of the image.

The nal veri cation for our proposed system is based on theedmporal consistency of
smoke. The ADU provides a coherent description of segmentschoke over time. The
goal is to track smoke from frame to frame, and to establish @xespondence between the
smoke instances over time. Figure 17 shows that the ADU gattsestatistical alarm data
from video sequences and calculates the ratio between tharah issue and total number
of video sequences.

Past 1 2 3 4 5 6 7 3 9 | 10 Present

Figure 17. lllustration of alarm decision unit (ADU)

If an alarm is required for over 50% of a prede ned time inteid, the smoke-detection
system sends out a real alarm. This approach deals better Witsudden photo-timer
changes or transient noise caused by cameras. Figure 18 shive smoke-detection results
with and without the ADU. The smooth Iter eliminates miscalculations or transient noise
and enhances system stability.

3. Experimental Results.  This section reports the performance evaluation of the pro-
posed smoke-detection technique and provides a quantitadi comparison based on indices
for the detection rate, false-alarm rate, and reaction time
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(a) Smoke-detection results without ADU (b) Smoke-detection results with ADU

Figure 18. lllustration of smoke-detection results with and without ADU
(Red indicates blocks with smoke and green indicates non-ske blocks)

To evaluate the e ectiveness of the proposed algorithm, wenplemented the system
on a PC with an Intelr Core™ 2 Duo CPU (2.2 GHz) and 2 GB RAM. The software
platform was based on Borland C++ 6.0 and we used LIBSVM tool$42] to train the
classi er for smoke detection. In addition, Table 2 shows #it an extensive experimental
dataset of recorded videos was used to evaluate the e cacy @ ciency of the system
in many real-world scenarios, including indoor, outdoor,ra tunnel environments. The
average processing time was 32.27 ms per frame; i.e., thegmeed algorithm can process
30.98 frames per second. In other words, the proposed smdktection method can be
used in real-time VSD applications. Video demos of the proped smoke-detection system
are available online [44].

3.1. Performance of the proposed system. Figures 19-21 show test images where the
proposed smoke-detection system achieved perfect detentresults. Red blocks indicate
smoke regions and green blocks indicate non-smoke regiorfSigure 19 illustrates an
outdoor environment situation. No wind was blowing in the cee of Figure 19(a), but
wind was blowing hard in the case of Figures 19(b)-19(d), areioke was oating steadily
in the air. The features were not a ected by the external envonment and smoke regions
were detected correctly.

Figure 20 shows indoor environmental situations. Smoke fiegs could be detected
correctly even with people walking around.

Figure 21 shows an outdoor environment with ordinary movingbjects. Smoke regions
were detected correctly with pedestrians, cars, motorcyd, and bicycles in our test data,
as shown in Figures 21(a)-21(f).

The following section discusses the test results for realatc situations in tunnels.
Several tra ¢ conditions were found in the test videos, inaiding tra ¢ jams and large
tour buses. The total length of the test videos was four hourand smoke regions were
detected correctly. However, test results also included anall number of false alarms, as
shown in Figure 22(f). Figures 22(a) and 22(b) illustrate tb tunnel environment with
smoke objects. The proposed algorithm detected smoke catig and emitted alarms in
su cient time. Figure 22(c) shows di erent vehicles in a tunnel that did not activate the
alarm system. Figure 22(d) shows cars in a tunnel at night, velneas Figure 22(e) shows
cars in the same tunnel during the daytime.

The proposed system successfully sent alarms for smoke éseém every test video. We
propose a frame-based criterion to quantitatively evaluata VSD system. Table 3 lists
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Table 2. Properties of the test video

Movie List Description

Movie 01 | Light smoke with a pedestrian

Movie_02 | Light smoke with pedestrians, bicycles, cars, and swayingaves
Movie_03 | Fast-moving smoke with a pedestrian
Movie_04 | Light smoke with a pedestrian and a car
Movie_05 | Pedestrians walking through smoke

Movie_06 | Light smoke with pedestrians and a car
Movie_07 | Dark smoke with pedestrians and a car
Movie_08 | Light smoke with pedestrians

Movie_09 | Smoke in a room

Movie_10 | Smoke in a room with a pedestrian

Movie_11 | Light smoke in a tunnel with pedestrians
Movie_12 | Dark smoke in a tunnel with pedestrians
Movie_13 | Trailer towing away a truck with pedestrians
Movie_14 | Cars with a dark shadow

Movie_15 | Cars in a tunnel during daytime

Movie_16 | Cars in a tunnel at night

Movie_17 | Cars in a tunnel with photo timer adjustment
Movie_18 | Cars in tunnel entrance with sunlight variations
Movie_19 | Cars in tunnel entrance with sunlight variations
Movie_20 | Cars in tunnel exit with sunlight variations

(b)

(© (d)

Figure 19. Smoke-detection results in diverse outdoor environments
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@) (b) ()

Figure 20. Smoke-detection results in indoor environment

@) (b) (©

(d)

Figure 21. Smoke-detection results in outdoor environment containg
moving objects

the quantitative evaluations for each feature and the combed features with and without
the ADU. The detection rate and false-alarm rate are calculad as

Detection Rate = -veetected 16004 (7)
smoke
N
False Alarm Rate = — s detected 9 50, (8)
non-smoke

Table 3 shows that the SVM classi er learnt the complementar relationships among
the three features and achieved a low false-alarm rate of %7 Furthermore, the combined
features with the ADU results show that the ADU further decrased the false-alarm rate
from 1.7% to 0.1%, while slightly decreasing the detectiorate.

3.2. Comparison. The use of consistent evaluation criteria is essential to sare that the
comparisons between di erent approaches are accurate andhiased. In the past, some
studies [8,9] have applied video-based criteria. One smokileo usually contains one



SMOKE DETECTION USING SPATIAL AND TEMPORAL ANALYSES 19

@) (b) (c)

(d) (e) ()

Figure 22. Smoke-detection results in real tra c situations in tunneks
(Red indicates blocks with smoke and green indicates non-ske blocks)

Table 3. Frame-based results of the proposed features

Detection False-Alarm Reaction

Rate Rate Time (sec)
2-D Spatial Wavelet Analysis 93.5% 38.0 % {
1-D Spatial-temporal Energy Analysis 91.7 % 13.1 % {
1-D Temporal Chromatic Con guration Analysis| 85.5 % 11.2 % {
Combined Feature Analysis 85.2 % 1.7 % 0.86
Combined Feature Analysis + ADU 83.5 % 0.1 % 1.34

smoke event. Another criterion was frame-based [13,28]. i&zally, video-based criteria
can objectively evaluate the detection rate of a smoke-det#n system, while frame-based
criteria indicate the sensitivity of a system. This study ued both video-based and frame-
based criteria. Based on the video-based criteria, we calated the number of detected
smoke videos and falsely detected non-smoke videos in a vidataset containing smoke
and non-smoke clips. Based on the frame-based criteria, wadaulate the average reaction
time for detected smoke events using each smoke-detectigstem.

The test videos used for comparison are listed in Table 2. Thest video dataset
contained 12 smoke videos and 8 non-smoke videos. This stways compared with other
approaches, including the wavelet-based method proposey Boreyin et al. [9] and a
method based on motion features proposed by Yuan [20]. Talleshows a comparison of
the results with the three di erent smoke-detection method.

The motion-based method proposed in [20] detected all smoki€leos with the shortest
reaction times. Unfortunately, any environment with upwad moving objects, such as
tunnels, caused false alarms. Figure 23 shows a false alaasecdetected with the motion-
based method. Upward motions caused by vehicles were as sgas those caused by
smoke. Table 4 shows that the results for [20] contained theast false alarms.
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Table 4. Comparison of results using di erent approaches

Reaction # of detected # of false
Methods . . i
time (sec) smoke videos alarmed videos
F. Yuan [20] 1.2 12 6
Toreyin et al. [9] 1.7 10 2
This study 1.34 12 1
(a) Motion orientation map (b) Histogram of motion

accumulation

Figure 23. Experimental result in tunnel using smoke-detection mettw
proposed in [20]

The method used in [9] was composed of spatial and temporahfieres calculated by
wavelets. The wavelet-based method proposed in [9] prodddew false alarms but failed
to detect smoke in two videos. Smoke was very thick in an indoenvironment in the
two undetected smoke videos, as shown in Figure 20. Thereafpthe texture of smoke
area and the temporal variance for each pixel value was vergw. The wavelet-based
temporal feature proposed in [9] was calculated pixel by @k so it was not easy to extract
the slow-changing texture of the smoke characteristics. Mever, our study proposed
spatial-temporal analyses to temporally calculate the vaénce of spatial features in each
block area. Thus, the proposed spatial-temporal feature ggprovide higher resolution
for modeling slow-changing phenomena pertaining to smokés a result, our proposed
smoke-detection method detected all smoke videos with ampriate reaction times and
only one false alarm.

4. Conclusions and Future Works. Smoke detection is a crucial task for many video
surveillance applications, and it could have a great impaatn raising the safety levels in
urban areas. The visual features of video re and smoke detgm used in previous studies
can be divided into four categories: (1) motion, (2) appearee, (3) color, and (4) energy
(texture). However, none of these features is perfect besmueach feature produces false
alarms in certain situations. Therefore, no existing algthms are su ciently robust and
exible enough to overcome all the problems faced by the autmatic video re and smoke-
detection systems, such as lighting conditions, scene cdewty, and shadows. This study
developed a novel smoke-detection approach using spatialdatemporal analyses, which
was based on a block-processing technique. Motion featun@sre used to extract the
candidate regions. The energy-based and color-based featuof the candidate regions
were then analyzed in their spatial, temporal, and spatigiemporal domains before all the
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proposed features were further combined using a SVM classi. To decrease the false-
alarm rate and maintain a high detection rate with a short reation time, a temporal-based

alarm decision unit (ADU) was developed. An extensive expiarental analysis of recorded
videos evaluated the e cacy and e ciency of the system in mag real-world scenarios,
including indoor, outdoor, and tunnel environments. Our egerimental results showed
that the proposed algorithm can detect smoke with a low falsglarm rate and a short

reaction time.

The experimental results show that the proposed smoke-det®n algorithm can work
very well in various conditions in real environments. Howey, there are still some short-
comings in the proposed method, such as light re ections fmo wet ground and the con-
tinuous adjustments of the exposure value by the camera. Tredore, we need to make
further improvements in the near feature. To overcome thesaitical problems, a global
feature-veri cation scheme will be introduced in our futue study, which will tentatively
be based on the area ratio, contour analysis, region analysand other methods.
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